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Abstract: Concerns over vaccine efficacy after the emergence of the SARS-CoV-2 Delta variant
prompted revisiting the vaccine design concepts. Monoclonal antibodies (mAbs) have been developed
to identify the neutralizing epitopes on spike protein. It has been confirmed that the key amino acid
residues in epitopes that induce the formation of neutralizing antibodies do not have to be on the
receptor-binding domain (RBD)- angiotensin-converting enzyme 2 (ACE2) contact surface, and may
be conformationally hidden. In addition, this epitope is tolerant to amino acid mutations of the Delta
variant. The antibody titers against RBD in health care workers in Thailand receiving two doses of
CoronaVac, followed by a booster dose of BNT162b2, were significantly increased. The neutralizing
antibodies against the Delta variant suggest that the overall neutralizing antibody level against the
Wuhan strain, using the NeutraLISA, was consistent with the levels of anti-RBD antibodies. However,
individuals with moderate anti-RBD antibody responses have different levels of a unique antibody
population competing with a cross-neutralizing mAb clone, 40591-MM43, determined by in-house
competitive ELISA. Since 40591-MM43 mAb indicates cross-neutralizing activity against the Delta
variant, this evidence implies that the efficiency of the vaccination regimen should be improved to
facilitate cross-protective antibodies against Delta variant infections. The RBD epitope recognized by
40591-MM43 mAb is hidden in the close state.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus
disease 2019 (COVID-19). It has infected more than 481.8 million people globally and
caused over 6.1 million deaths [1–3]. Tremendous efforts have been put into discovering
effective vaccines for preventing SARS-CoV-2 infection and disease transmission. SARS-
CoV-2 shares high sequence homology with SARS-CoV and infects host cells via a similar
mechanism [4,5]. These viruses use angiotensin-converting enzyme 2 (ACE2) as a cell
receptor for viral entry through their transmembrane spike (S) glycoprotein. The S protein
consists of two subunits, S1 and S2. The S1 subunit binds the target cells expressing viral
receptor through the receptor-binding domain (RBD), whereas the S2 subunit promotes
virus–cell membrane fusion [6,7]. According to the vital roles of S protein, current US
FDA-approved vaccines focus on challenging immune responses against the S1 subunit
of SARS-CoV-2 spike. Trimeric spike proteins in native form and prefusion-stabilized
conformation have been applied [8–10].

Curr. Issues Mol. Biol. 2022, 44, 2842–2855. https://doi.org/10.3390/cimb44070195 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb44070195
https://doi.org/10.3390/cimb44070195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://doi.org/10.3390/cimb44070195
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb44070195?type=check_update&version=1


Curr. Issues Mol. Biol. 2022, 44 2843

Regarding the rapid mutation of SARS-CoV-2, the protective antibodies induced by
first-generation vaccines based on the Wuhan strain are remarkably reduced. This evidence
has generated awareness of vaccine efficiency following the report of the Delta variant,
which causes severe symptoms [11,12]. The neutralizing epitopes on critical amino acids in
the RBD are crucial in protecting against COVID-19 variants with relative mutations [13,14].
The mutations in the spike protein may impair the efficacy of neutralizing antibodies by
modifying the protein binding activity with ACE2 [15]. Although mutated amino acids of
Delta variants reside in the S1 domain, they do not participate in the contact surface between
the RBD and ACE2. This evidence supports the possibility that the neutralizing antibodies
may not be necessary to target the epitopes on the interaction surface of RBD [16,17].

The subregion of S1, called receptor-binding motif (RBM), consists of amino acids from
424-494. The participation of RBM in supporting the conformation of the RBD to form a
complex with ACE2 was clarified regarding the crystal structure [18]. Although this region
is indirectly involved in ACE2 binding, the specific mAbs that interact with this motif can
interfere with the infectivity of SARS-CoV-2. Several SARS-CoV-2 RBD-specific mAbs have
been developed by several companies. Some of them have been approved for emergency
use in the treatment of COVID-19, such as bamlanivimab as a monotherapy, and the casiriv-
imab/imdevimab cocktail, which blocks viral entry into human cells [19,20]. Nowadays,
there are a number of mAbs in late-stage clinical studies or marketed for COVID-19, such as
Adintrevimab (ADG20), TY027, and Regdanvimab [21]. Recently, a discontinuous epitope
recognized by a neutralizing antibody, H014, was reported. Interestingly, the reactive amino
acids, i.e., F374, F377, C379, G413, and W436, are conserved in Delta and accessible when
the RBD is in the open state [22]. The enhancement of the binding affinity of RBD-ACE2
was reported in the W436R mutant [23]. In addition, W436R mutation contributes to more
stabilization of the RBD folding structure [24]. The cross-neutralizing antibodies against
W436R were observed in a convalescent patient [25]. A mouse mAb clone, 4051-MM43,
showed cross-reactivity and neutralizing activity against wild-type (WT) SARS-CoV-2
and the Delta variants [26,27]. Regarding its property, it is worth characterizing the motif
recognized by 4051-MM43 mAb.

In this study, the levels of neutralizing antibodies were determined in HCWs receiving
a booster dose of BNT162b2 (Pfizer–BioNTech) after two doses of CoronaVac. The Neu-
traLISA was applied to determine overall neutralizing antibodies, which interfere with
the complex formation of ACE2 and RBD. In addition, in-house competitive ELISA was
established to determine the neutralizing antibodies targeting the epitope recognized by
40591-MM43 mAb. An amino acid participating in the epitope recognized by 40591-MM43
mAb was identified and its location was analyzed in the RBD conformational structure. The
information obtained will provide an approach to improve the efficiency of the COVID-19
vaccine.

2. Materials and Methods
2.1. Subjects

This research was conducted in Chiang Mai, Thailand, from August to September 2021.
HCWs from Maharaj Nakorn Chiang Mai Hospital provided written informed consent
for blood samples and oral informed consent to participate in a longitudinal study of
antibodies against the RBD of SARS-CoV-2 in plasma samples and survey responses. Fifty
participants were enrolled in this study and visited between 10–11 August and 24–25
August 2021.

2.2. Ethical Policy

Ethical approval was received from the Ethics Committees at the Faculty of Associated
Medical Sciences, Chiang Mai University (ethics approval number: AMSEC64EX-013)
and the Research Ethics Committee, Faculty of Medicine, Chiang Mai University (ethics
approval number: COM-2564-08458).
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2.3. Sample Preparation and Design

A total of 10 mL of EDTA blood samples was collected once at 14 days post 3rd
vaccination with BNT162b2. The EDTA blood samples were centrifuged at 3,000 rpm for
10 min at room temperature, and the plasma samples were collected and stored at −20 ◦C
until analysis.

Plasma samples from the enrolled subjects were sent to the Associated Medical Sci-
ences (AMS) Clinical Service Center at the Faculty of AMS, Chiang Mai University, to
detect IgG antibodies against SARS-CoV-2. In samples, IgG antibodies against the RBD of
SARS-CoV-2 were analyzed using the ARCHITECT i System (Abbott, Ireland) and com-
pared with the in-house indirect enzyme-linked immunosorbent assay (ELISA). In terms of
neutralizing antibodies against the RBD of SARS-CoV-2, in-house competitive ELISA
was performed and compared with the SARS-CoV-2 NeutraLISA assay (EUROIMMUN,
Germany, cat.no. EI2606-9601-4).

2.4. Statistics

The statistical analysis was conducted using GraphPad Prism version 8.2.1, GraphPad
Prism (GraphPad Software, Inc.). Spearman and Pearson’s analyses were performed to
evaluate the correlation coefficient. The correlation between IgG antibodies anti-RBD versus
percent inhibition of neutralizing antibodies by NeutraLISA and in-house competitive
ELISA was determined using Spearman. The correlation analysis of in-house competitive
ELISA and NeutraLISA was conducted by Pearson. For all statistical tests, two-tailed
p-values less than 0.05 were considered statistically significant.

2.5. Detection of IgG Antibodies against the RBD of SARS-CoV-2

Antibody levels were determined using the ARCHITECT i System (Abbott, Ireland).
Antibodies (IgG) to the SARS-CoV-2 spike protein RBD were detected in plasma using the
Abbott assay. The number of antibodies in each examined sample was measured in units
specific to the assay (AU/mL), according to the manufacturer’s instructions with regards
to the WHO standards.

2.6. Determination of Neutralizing Antibodies against the RBD of SARS-CoV-2 by SARS-CoV-2
NeutraLISA

Neutralizing antibodies against SARS-CoV-2 were determined using the SARS-CoV-2
NeutraLISA assay. The recombinant S1/RBD domain of the S protein of SARS-CoV-
2 was coated on the plates, and the assay procedure was performed as described by
EUROIMMUN. In brief, the controls and samples were diluted in a sample buffer containing
soluble biotinylated ACE2 before being incubated in the reagent wells. If neutralizing
antibodies were present in the sample, they competed with the ACE2 receptor for the
binding sites of the SARS-CoV-2 S1/RBD proteins. In a second washing phase, unbound
ACE2 was eliminated. A second incubation step with peroxidase-labeled streptavidin was
performed to assess the bound biotinylated ACE2, which catalyzed a color reaction in the
third reaction step. The intensity of the color produced was inversely proportional to the
concentration of neutralizing antibodies in the sample.

2.7. Detection of the Antibodies Targeting the Epitope Recognized by mAb Using Competitive
ELISA

The competitive ELISA was achieved by the competition of neutralizing antibodies
against the RBD in vaccinated plasma and the spike neutralizing mouse mAb. The wells
were coated with 50 µL of 1.0 µg/mL SARS-CoV-2 spike RBD-His recombinant protein (Sino
Biological, Beijing, China) (Cat. 40592-V08H31) (diluted in coating buffer 1M NaHCO3
(pH 9.6)) and kept overnight at 4 ◦C in the moisture chamber. The coated wells were
washed four times with 0.05% Tween 20 in PBS (pH 7.4) (PBST) and non-specific binding
was blocked with 200 µL of 2% skimmed milk in PBS at room temperature for 1 h. After
washing, plasma samples at dilution 1:5 were combined with 2.5 µg/mL spike neutralizing
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antibody mAb (40591-MM43) (Sino Biological, Beijing, China) (Cat. 40591-MM43), then
added to ELISA wells and incubated for 1 h. The wells were washed and HRP-conjugated
goat anti-mouse Igs was added at dilution 1:3,000 (KPL, Gaithersburg, MD, USA) (Cat.
074-1807). After incubation for 1 h, the wells were washed and 50 µL of TMB substrate was
added (Seracare, Milford, MA, USA) (Cat. 5120-0076). The reaction was stopped with 1 N
HCl, and the OD at 450 nm was measured.

2.8. In-house Indirect ELISA

For indirect ELISA, a 96-well microtiter plate (Greiner Bio-One) (Cat. 762071) was
coated overnight at 4 ◦C with 50 µL per well of 1 µg/mL of SARS-CoV-2 spike RBD-His
recombinant protein, WT and Delta (Sino Biological, Beijing, China) (Cat. 40592-V08H115)
and W436R mutants (Sino Biological, Beijing, China) (Cat. 40592-V08H9), in coating buffer
(pH 9.6) for detection of SARS-CoV-2 spike RBD antibodies. After blocking with 2%
skimmed milk at 25 ◦C for 1 h, 1.0 µg/mL spike neutralizing antibody mAb (40591-MM43)
with 2% skimmed milk in PBS was added to the coated wells. The plate was incubated
at room temperature for 1 h and washed with washing buffer (PBST). After washing,
HRP-conjugated goat anti-mouse Igs was added to each well for 1 h. After washing, TMB
Substrate Solution was added and incubated for 10 min. The reaction was stopped by
1N HCl, and the OD at 450 nm was measured using a micro-plate reader (Hercuvan Lab
Systems, Milton Cambridge, UK).

2.9. Western Blot Analysis

Purified SARS-CoV-2 spike RBD-His recombinant protein, WT and mutants (Delta
and W436R) (50 µg/mL), was subjected to SDS-PAGE under reducing conditions, and then
transferred to nitrocellulose membranes. The membrane was blocked with 2% skimmed
milk in PBS. The SARS-CoV-2 (2019-nCoV) spike neutralizing mouse mAb (40591-MM43)
(Sino Biological, Beijing, China) (Cat. 40591-MM43), SARS-CoV-2 (2019-nCoV) spike RBD
mouse polyclonal antibody (pAb) (Sino Biological, Beijing, China) (Cat. 40592-MP01) or
anti-6x His mAb (0.5 µg/mL, Invitrogen, Rockford, IL, USA) (Cat. MA1-21315) were
separately added and incubated for 1 h at room temperature with shaking. After washing,
the membranes were incubated with an HRP-conjugated goat anti-mouse immunoglobulin
antibody (dilution 1:5,000 in blocking solution) for 1 h. The membranes were washed,
and bands were visualized using KPL LumiGLO® Chemiluminescent Substrate System
(Seracare, Milford, MA, USA) (Cat. 5430-0040). The resulting reactive protein bands were
visualized using a ChemiDoc™ MP Imaging System (Bio-Rad, Hercules, CA, USA).

2.10. Structure Analysis of SAR-CoV-2 Spike Protein and ACE2

The amino acid residues participating in the complex structure of RBD with the host
receptor ACE2 (PDB ID:6m0j) were analyzed using Prodigy [28]. The relative solvent
accessibility value of amino acid residues in the RBD of SAR-CoV-2 S protein was analyzed
using MISSENSE 3D [29] in RBD close (PDB ID: 7DDD) and open (PDB ID:7DDN) states.
The amino acid residues of interaction between the SARS-CoV-2 spike RBD and ACE2, and
RBD close and open state in the SAR-CoV-2-S protein, were labeled using UCSF Chimera
software [30].

3. Results
3.1. Detection of IgG Antibodies against the RBD of SARS-CoV-2 Using ARCHITECT i System

Plasma samples from Thai HCWs at 14 days post third vaccination with BNT162b2
were examined for the levels of IgG antibodies against the RBD of SARS-CoV-2 by AR-
CHITECT i System (Abbott, Ireland) (n = 50). The antibody levels were classified into four
groups (Figure 1).
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Figure 1. IgG antibodies against the RBD of SARS-CoV-2 levels in plasma samples, collected at
14 days post 3rd vaccination with BNT162b2 (n = 50), were measured by ARCHITECT i System
(Abbott, Ireland).

3.2. Validation of Neutralizing Antibodies against the RBD of SARS-CoV-2

The competitive ELISA is used to identify a population of antibodies that recognize
a specific motif on an RBD interacting with mAb 40591-MM43, with neutralizing activ-
ity against the WT and Delta variants. Competitive ELISA was employed to determine
neutralizing antibodies against the RBD of SARS-CoV-2. Two assays were used to deter-
mine neutralizing antibodies in plasma: SARS-CoV-2 in-house competitive ELISA and
NeutraLISA. The different levels of neutralizing antibodies between individuals are shown
in Figure 2.
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Figure 2. Comparison of the neutralizing antibodies against the RBD of SARS-CoV-2 in plasma
samples collected at 14 days post 3rd vaccination with BNT162b2 by NeutraLISA and in-house
competitive ELISA (n = 50).

The correlation between IgG antibodies anti-RBD (AU/mL) and percent inhibition of
neutralizing antibodies by NeutraLISA and in-house competitive ELISA was determined
using Spearman’s correlation coefficients. Spearman’s correlation analysis revealed a very
strong positive, statistically significant association between antibodies and RBD detected by
Architect i SARS-CoV-2 IgG II Quant with NeutraLISA (rs = 0.8576, p < 0.0001, Figure 3A),
and with in-house competitive assay (rs = 0.8246, p < 0.0001, Figure 3B). However, rs
from Spearman’s correlation was significantly lower when the population with less than
25,000 AU/mL IgG antibodies anti-RBD was analyzed. Spearman’s correlation analysis
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demonstrated the moderate positivity between antibodies and RBD detected by Architect
i SARS-CoV-2 IgG II Quant with NeutraLISA (rs = 0.5500, p = 0.0337), and with in-house
competitive assay (rs = 0.5594, p = 0.0301).
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Figure 3. The comparison between IgG antibodies anti-RBD (AU/mL) and percent inhibition of neu-
tralizing antibodies by NeutraLISA (A) and in-house competitive ELISA (B). The correlation between
IgG antibodies anti-RBD (AU/mL) and percent inhibition of neutralizing antibodies by NeutraLISA
and in-house competitive ELISA was performed using Spearman’s correlation coefficients. Statistical
significance was calculated using the two-tailed test (*** p < 0.0001).

The correlation analysis of in-house competitive ELISA and NeutraLISA was deter-
mined by Pearson’s correlation coefficients. The moderate correlation between in-house
and NeutraLISA was significant, as shown in Figure 4 (Pearson r = 0.6877; p < 0.0001;
R2 = 0.4729).
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Figure 4. Correlation between the neutralizing antibodies against the RBD of SARS-CoV-2 by
NeutraLISA and in-house competitive ELISA was analyzed using Pearson’s correlation coefficients.
Statistical significance was calculated using the two-tailed test (n = 50).

3.3. Binding Activity of 40591-MM43 mAb against WT and Mutants of SARS-CoV-2 Spike RBD
Using Indirect ELISA

To analyze the binding activity of 40591-MM43 mAb to SARS-CoV-2 spike RBD (WT,
Delta, and W436R) protein, indirect ELISA was performed. SARS-CoV-2 spike RBD (WT,
Delta, and W436R) was detected by spike neutralizing antibody mAb (40591-MM43). High
optical density was obtained from WT and Delta, whereas the signal OD from W436R
was decreased (Figure 5A). These data suggest that the mAbs that neutralize SARS-CoV-2
may bind a conserved epitope on the spike RBD. The binding activity of 40591-MM43 mAb
against each of the three RBDs (WT, Delta, and W436R) with different scalar concentrations of mAb
(0.1, 0.5, 1, 2.5, and 5 µg/mL) is shown in Figure 5B. The OD obtained from WT and Delta
reactions was in keeping with the concentration of mAb; however, the OD from W436R
was remarkably lower, and not dependent on the concentration of mAb.
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Figure 5. Binding activity of 40591-MM43 mAb to SARS-CoV-2 spike RBD WT, Delta, and W436R
(A). The experiment is performed in triplicate. Statistical significance was determined by a two-tailed
Student’s test (*** p < 0.0001). Binding activity of 40591-MM43 mAb to SARS-CoV-2 spike RBD WT,
Delta, and W436R with different scalar concentrations of mAb (B). The experiment is performed in
triplicate.

3.4. Locating Amino Acid Residues on SAR-CoV-2 Spike Protein Structure

The interaction of the spike’s RBD domain with the host ACE2 receptor (PDB ID:6m0j)
is shown in Figure 6. The critical mutations in the Delta RBD are depicted in the crystal
structure (Figure 6). The mutations in Delta, such as lysine at position 417 to asparagine
(K417N), leucine at position 452 to arginine (L452R), threonine at position 478 to lysine
(T478K), and glutamic acid at position 484 to lysine (E484K), are shown in green, whereas
tryptophan at 436 (W436) is labeled in red. Relying on the SARS-CoV-2-S protein structure
(PDB ID: 7DDD and 7DDN), the result showed that W436 is located at the RBM of the RBD
domain (Figure 7). Focusing on W436, the relative solvent accessibility (RSA) is 3.5% in the
close state of the RBD. In contrast, the RSA of W436 in the open state of the RBD is 35.2%
(Figure 7).
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3.5. Determination of SARS-CoV-2 Spike RBD mAb to RBD WT and Mutants Interaction Using
Western Blotting

To determine the binding of SARS-CoV-2 spike RBD mAb clone 40591-MM43 to SARS-
CoV-2 spike RBD-His recombinant protein (WT, Delta, and W436R), a Western blot analysis
was conducted. The results demonstrated that mAb clone 40591-MM43 could not recognize
the epitope on WT, Delta, and W436R (Figure 8, strips no. 1, 4, and 7); whereas, SARS-CoV-2
spike RBD mouse pAb (40592-MP01) (Figure 8, strips no. 2, 5, and 8) and anti-6x His mAb
(Figure 8, strips no. 3, 6, and 9) bound to WT and Delta and W436R. This suggested that
the 40591-MM43 that neutralizes SARS-CoV-2 binds to a conformational epitope on the
spike RBD.
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4. Discussion

Several mAbs have been established for validating the neutralizing epitopes on S protein.
Humanized and fully human mAbs have been applied in clinical studies. Currently, only two
of them, i.e., casirivimab against the open state of RBD and imdevimab against the RBD core,
are successfully approved by the FDA for passive immunotherapy in patients with moderate
symptoms caused by the latter SARS-CoV-2 Delta variant [31,32]. Interestingly, the interactive
sites of these mAbs are located in the RBM. They are tolerant to amino acid mutation of the
Delta variant, although they non-competitively bind to epitopes of the SARS-CoV-2 protein
RBD [20,33]. Considering the interaction between casirivimab and imdevimab, the B-cell
receptors cannot efficiently access their epitopes while RBD is in the close stage. This complies
with the phenomenon that the population receiving CoronaVac only cannot promote cross-
protective antibodies, since the open state of the RBD is minor in S trimers. Modification of
the spike of BNT162b2, using the HexaPro strategy, provides a greater possibility of retaining
the RBD in the open state [34,35]. This results in better protection of the Delta variant in
BNT162b2 vaccinated individuals [36].

Beyond the pandemic of the Delta variant in 2021, this also initiates concern around
the currently available vaccine, with regard to the S protein of the Wuhan strain. The cross-
protectivity of vaccinated individuals is remarkably reduced across all vaccine regimens,
due to several amino acid mutations. In Thailand, the vaccine regimen for HCWs was two
doses of CoronaVac, followed by a booster dose of BNT162b2. The comparative antibody
titer of pre- versus post-BNT162b2 was reported in our former study [37]. Although the
antibody titers are higher in post-BNT162b2, certain populations achieved low-to-moderate
responding degree (Figure 1). Thus, it is interesting to verify the property of neutralizing
antibodies against the Delta variant.

Since 40591-MM43 mAb harbors neutralizing activity against the Delta variant [27], it
is worth comparing the relationships in the specific population of neutralizing antibodies
activated in this study cohort. Sera from 50 volunteers were collected after 14 days post
3rd vaccination with BNT162b2, to analyze their neutralizing antibody characteristics with
an in-house competitive ELISA, compared with the commercial assay, i.e., SARS-CoV-2
NeutraLISA. The in-house competitive ELISA aims to identify the population of human
antibodies that recognize the specific motif on the RBD targeted by mAb 40591-MM43.
In contrast, the NeutraLISA detects the overall population of antibodies interfering with
the reactivity of the RBD and ACE2. Formerly, the anti-SARS-CoV-2 spike and RBD IgG
titer in patients infected in Italy and Germany was reported to strongly correlate with
the neutralizing antibody titers [38,39]. This evidence was also clearly demonstrated in
this cohort using NeutraLISA and in-house competitive ELISA (Figure 3). Noticeably,
the levels of neutralizing antibodies differ among individuals, especially in the moderate
antibody titers. When reanalyzed using the samples with titers below 25,000 AU/mL,
the correlation (R2) values of NeutraLISA and in-house competitive ELISA were 0.5026
(p = 0.0031) and 0.3246 (p = 0.0266), respectively. Regarding Pearson’s statistical analysis
of in-house ELISA and NeutraLISA (r = 0.6877; p < 0.0001), the correlation is significant
to a moderate degree. Since the R2 (0.4729) is below 0.5, the strength of the model is
rather low (Figure 4). Accordingly, the antibody response after boosting with BNT162b2
(Pfizer–BioNTech) probably does not effectively recognize the epitope of 40591-MM43
mAb. In addition, the antibodies specific to the 40591-MM43 mAb-related epitope did not
correspond to the antibody titers determined by Architect i SARS-CoV-2 IgG II Quant. This
evidence suggests that the vaccination regimen for this cohort is not sufficient to promote
the antibodies that cross-protect the infection of WT and Delta variants.

The binding activity of 40591-MM43 mAb against WT and mutants, i.e., Delta and
W436R, was further evaluated. Although it recognized the conserved motif of WT and Delta
RBD, its immunoreactivity against the W436R mutant was markedly diminished (Figure 5).
This information suggests that the W436 participates in the antigenic determinant of the
RBD. This crucial amino acid is conserved among WT and Delta variants, and resides in
the RBM compartment of the RBD. This supports the fact that the key residues, which
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trigger the neutralizing antibodies, are not necessary to locate on the RBD-ACE2 contact
surface [17,40].

The SARS-CoV-2-S protein contains both open and close structures found in the RBD.
The open state is required for the S protein to bind to the ACE2 receptor. At least one RBD in
the trimeric spike is positioned open, then turned outwards from S2, revealing the surface
that attaches to the receptor. Regarding the analysis of the molecular structure of the SARS-
CoV-2 spike (PDB ID: 7DDD and 7DDN), W436 is accessible while the RBD structure is in
the open state. Regarding 3,854 prefusion trimers, the structure of the fully closed trimer
and trimers with one RBD open represented approximately 31% and 55%, respectively [41].
Thus, the possibility to challenge the B-cell receptor against this occluded epitope consisting
of W436 is substantially low. Although BNT162b2 has promoted the open conformation of
RBD, a single booster dose is insufficient to trigger the antibody against this cross-protective
epitope relating to 40591-MM43 mAb. This reflects low protection efficiency against the
Delta variant. Accordingly, further booster with BNT162b2 should be suggested [42–44].

The Western blotting analysis demonstrated that 40591-MM43 mAb requires conforma-
tion structure on the RBD of WT, Delta and W436R to form the epitope. Thus, the synthetic
peptide strategy is not applicable to vaccine development. To acquire B-cell activation
against this cross-neutralizing epitope, the surface of the RBD should be accessible in every
dimension. Recently, the recombinant RBD subunit, instead of the whole S protein, has
been proposed for SARS-CoV-2 vaccines. The RBD vaccination strategy demonstrated a
significant impact on eliciting elevated cross-neutralizing antibody titers, with subsequent
protection against viral variants and the potential to limit community transmission [45].
Zhang et al. (2022) investigated the effect of adjuvants on the immunogenicity of three
COVID-19 vaccine candidates, based on proteins, including RBD-Fc, RBD, and S-trimer [46].
The feasibility of inducing protective immunity against Omicron and future emerging sar-
becoviruses relying on RBD was recently reported by Lui et al. (2022) [47]. This evidence
complies with our findings, which deliberate the approach of RBD vaccine competency.

5. Conclusions

The suggested vaccine protocol for HCWs in Thailand in the years 2020–2021 was
two doses of CoronaVac and a booster dose of BNT162b2. Since then, several studies have
reported the efficacy in preventing the infection. The anti-RBD antibody level after the
BNT162b2 booster is strongly associated with an overall neutralizing antibody against
the Wuhan strain. However, protection against the Delta variant is not adequate, which
has delivered huge concern for future vaccine design and vaccine regimens. Our study
demonstrated that the specific population of antibodies recognizing a cross-neutralizing
epitope on the RBM of the Delta variant is inadequate. This unique epitope is in the RBM
and is not accessible when the conformation of the RBD is in a close state. To increase the
possibility for B-cell receptors to access such an epitope, the RBD should be considered in
acquiring the broad protection of SARS-CoV-2 variants.
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